Evaluation of Humpback Chub Translocations in Shinumo Creek with Insights from Food Web Dynamics in Bright Angel Creek

Jon Spurgeon¹, Dan Whiting¹, Brian Healy² Emily Omana², Craig Paukert¹

¹USGS, Missouri Cooperative Fish/Wildlife Research Unit ²Grand Canyon National Park

Funding

Natural Resources
Preservation Program
MO Cooperative Fish and
Wildlife Research Unit
Grand Canyon NP

Questions

- How are the translocated HBC doing in Shinumo?
 - Are the staying in the system and why?
 - What is there growth, survival, and condition?
 - Is there resource overlap with native/non native fishes

What resources is the fish community in Bright

Angel using?

- Is there diet overlap?
- Do trout consume fish, and if so, how much?

Translocated HBC

902 total

2009: 302

2010: 300

2011: 300

Detection Efficiency

97 – 100 % individual detection (experiment) 51-87% detection (field; Lots of uncertainty)

Emigration Results

through Aug 1, 2011

33% of HBC that left leave within first 9 days

Initial Length

Emigration Summary

- Dispersal from Shinumo Creek is high
 - √ 42% of translocated HBC from 2009-2011 left Shinumo
 - √ 33% leave within the first nine days
- Larger Individuals may be more likely to leave
 Shinumo Creek within the first growing season

 Hydrology may have an effect (more fish leave during higher flows/monsoons season)

What About Growth and Condition?

Time period	Location	Mm/day	Source
Jun-Sep (2009, 2010)	Shinumo	0.28-0.31	This study
Jun-Sep 2010	LCR	0.24	C. Finch, U FL
First 90 days (2003-2005)	Chute Falls	0.26-0.55	FWS

No evidence of slower growth than other populations

Condition (relative weight)

Cohort	Mean Wr
2009	92-97
2010	81-96
2011	96

No evidence of low condition (93 is average for entire species)

Survival

Cormack Jolly Seber estimates Multiple mark recapture in Shinumo

Cohort	Apparent annual survival	Annual emigration	Annual fidelity	Annual survival**
2009	0.22	0.48	0.52	0.41
2010	0.19	0.45	0.55	0.34

**strongly linked to emigration/detection

2009 Translocation: 302 fish

Annual apparent survival (22%): 66 fish left

June 2010 population estimate (for 2009 fish only): 33 (10-106)

What about Species Interactions?

Does competition for food exists between natives and non-natives?

What is the consumption of inverts and fish by trout? Shinumo and Bright Angel Creeks

Stable Isotopes

Less invasive

What do they tell us?

- Food Source (δ ¹³C)
- Trophic Position ($\delta^{15}N$) Piscivory rates
- Long term diet habits

Stomach Content Analysis

more invasive

What can they tell us?

- Short term trends in diet
- Identify actual diet items

Shinumo Creek Rainbow Trout Diets

- Fish
- Aquatic Insects
- Terrestrial Insects
- Organic Matter

Piscivory rate:

RBT=4%

Bright Angel Creek Trout Diets

Brown Trout

Rainbow Trout

- Fish
- Aquatic Insects
- Terrestrial Insects
- Organic Matter

Piscivory rate:

BNT=18% RBT=5%

Shinumo Creek Isotopes Sept 2010 HBC June 2010 RBT ● 8 HBC 8 SPD Odo 6 SPD 7 Āra BHS Eph ● Dip 6 Odo Hem Ara 2 Hem Eph Col Tri 5 0 Meg Orth -2 -30 -28 -26 -20 -30 -28 -20 -22 -24 -26 -24 -22 δ 12 -10 RBT June 2011 Sept 2011 НВС HBC **RBT** 8 SPD 10 6 SPD Meg 8 -BHS Odo BHS Meg Dip • Col 6 Dip ● Eph Tri Lep 4 Odo Lep 0 Orth 2 -2 Col Orth 0 -4 -30 -26 -24 -22 -20 -28 -26 -20 -18 -22 -28 -24

Bright Angel Creek Isotopes

Preliminary Food Web Conclusions

RBT in Shinumo Cr:

- ✓ occupied the highest trophic positions (with HBC)
- ✓ Consumed invertebrates and native fishes

RBT and BNT in BAC:

- ✓ occupied the highest trophic positions
- ✓ Consumed invertebrates and native fishes
- ✓ Had somewhat similar diets to native fishes

But what is the impact?

Bioenergetics Model

Physiological Parameters
Stomach contents
Water temperatures
Modeled for 1 year

Results: Bioenergetics assumes no growth-minimum consumption estimates!

	В	BAC	
Food Type	RBT	BNT	RBT
Fish	47 g	163 g	152 g
Aquatic Insects	625 g	833 g	640 g
Terrestrial Insects	58 g	59 g	41 g
Detritus	226 g	44 6	48 g
Total Consumption	956 g	1099 g	881 g

^{*}Individual based model

^{*}Consumption estimates are represented in grams

Results: Bioenergetics

	BAC		Shinumo	
Food Type	RBT	BNT	RBT	
Fish	47 g	163 g	152 g	
Aquatic Insects	625 g	833 g	640 g	
Terrestrial Insects	58 g	59 g	41 g	
Detritus	226 g	44 6	48 g	
Total Consumption	956 g	1099 g	881 g	
# Fish Removed	419	539	970	
Potential Fish	19,693 g	87,857 g	147,440 g	

Removing trout 'saved': 107 kg of fish

147 kg of fish

Shinumo and Bright Angel Creeks What We Know

Translocations

- About 42% of HBC emigrate (Large fish more likely)
- Most on the first 9 days
- Growth appears sufficient

Biotic Interactions

- Trout compete with and predate on natives
- Piscivory higher for BNT, but RBT and BNT consume fish
- Trout populations are consuming lots of native fish (and inverts)

Shinumo and Bright Angel Creeks What We Don't Know

- How much food is available for natives and non natives?
- Cascading effects of non native removal (or native translocations)?
- Do HBC spawn/recruit in these tribs?
- What is the contribution of tributaries to the mainstem?
 - Nursery/grow-out location of mainstem fishes?
 - How do tributaries contribute to mainstem food resources?
 - Does removing trout free up substantial resources for tributaries and mainstem native fishes?

Acknowledgements

Peter Mackinnon-Utah State University
Dave Speas- Bureau of Reclamation
Marianne Crawford- Bureau of Reclamation
Melissa Trammell-National Park Service
Dave Loeffler-National Park Service River Crew
Bill Leibried- National Park Service
Pam Sponholtz-US Fish and Wildlife Service
Jeff Sorensen-Arizona Game and Fish
Grand Canyon Trust-Volunteers

Number and Size Structure of Translocated HBC

Emigration and Detection Efficiency

Emigration Assumptions:

Antenna 1 + Antenna 2 = Out of system

Antenna 1 only = Remain in system

Antenna 2 only = Out of system

Antenna 1 + Antenna 2 + Antenna 1 = Remain in system

Individual Efficiency: 97 – 100 % detection

Group efficiency??

51-87% detection (Lots of uncertainty)

Hydrology

Potential Causes of Emigration

Piscivory

		# of Stomachs	Fish Length (mm)
Shinumo (RBT)	4	155	75 – 350
BAC (RBT)	5	135	68 - 490
BAC (BNT)	18	103	79 - 375

Very Preliminary Invertebrate Drift Bright Angel Creek

	November	January	June	September
% Aquatic	87	97	88	76
% Terrestrial	13	3	12	24
Drift Density (mg/m³)	1.3	1.8	0.7	0.9
Drift Rate (g day ⁻¹)	110.6	169.5	96.4	95.3

How does this (and other tribs) contribute to the mainstem food resources?

Does removing trout free up substantial resources for trib and mainstem native fishes?